If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+14k-22=6
We move all terms to the left:
k^2+14k-22-(6)=0
We add all the numbers together, and all the variables
k^2+14k-28=0
a = 1; b = 14; c = -28;
Δ = b2-4ac
Δ = 142-4·1·(-28)
Δ = 308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{308}=\sqrt{4*77}=\sqrt{4}*\sqrt{77}=2\sqrt{77}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{77}}{2*1}=\frac{-14-2\sqrt{77}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{77}}{2*1}=\frac{-14+2\sqrt{77}}{2} $
| m-85/6=121/7 | | -6x-2(-2+12)=-4 | | 2x/5=4x/20 | | e+7/3=4 | | 6y+8=3(2y+4) | | 3x/8=3 | | -8t=15–7t | | 100+5x=600 | | 7(1−2f)+5=-11f | | 6u–3u=9 | | x^2+12=6 | | 4(d+13)=4 | | 2x/10=3 | | 4(f+9)=20 | | 30-2x=26 | | 7=-4k+-9 | | 3+4(x+1)=3x | | -158-2x-4x=58 | | a2-20a+100=0 | | 24–2r=4 | | c–72= 4 | | 2/e=2 | | -6x+4(2x+11)=26 | | 12n+9=18 | | k^2+14k+86=7 | | 1+4y=13 | | x•5-80=20 | | 3x+5=5x–15 | | x-82x-6x=23 | | x*x+x=360 | | 8k-7=4k-12-6k-10-3-2k | | x*x+x=90 |